EXAMPLE 2 Separable ODE

The ODE $y' = (x + 1)e^{-x}y^2$ is separable; we obtain $y^{-2} dy = (x + 1)e^{-x} dx$.

By integration,
$$-y^{-1} = -(x+2)e^{-x} + c$$
, $y = \frac{1}{(x+2)e^{-x} - c}$.

EXAMPLE 3 Initial Value Problem (IVP). Bell-Shaped Curve

Solve
$$y' = -2xy$$
, $y(0) = 1.8$.

Solution. By separation and integration,

$$\frac{dy}{y} = -2x dx, \qquad \ln y = -x^2 + \widetilde{c}, \qquad y = ce^{-x^2}.$$

This is the general solution. From it and the initial condition, $y(0) = ce^0 = c = 1.8$. Hence the IVP has the solution $y = 1.8e^{-x^2}$. This is a particular solution, representing a bell-shaped curve (Fig. 10).

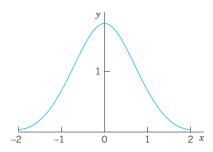


Fig. 10. Solution in Example 3 (bell-shaped curve)

Modeling

The importance of modeling was emphasized in Sec. 1.1, and separable equations yield various useful models. Let us discuss this in terms of some typical examples.

EXAMPLE 4 Radiocarbon Dating²

In September 1991 the famous Iceman (Oetzi), a mummy from the Neolithic period of the Stone Age found in the ice of the Oetztal Alps (hence the name "Oetzi") in Southern Tyrolia near the Austrian–Italian border, caused a scientific sensation. When did Oetzi approximately live and die if the ratio of carbon $^{14}_{6}$ C to carbon $^{12}_{6}$ C in this mummy is 52.5% of that of a living organism?

Physical Information. In the atmosphere and in living organisms, the ratio of radioactive carbon ${}^{14}_{6}\text{C}$ (made radioactive by cosmic rays) to ordinary carbon ${}^{12}_{6}\text{C}$ is constant. When an organism dies, its absorption of ${}^{14}_{6}\text{C}$ by breathing and eating terminates. Hence one can estimate the age of a fossil by comparing the radioactive carbon ratio in the fossil with that in the atmosphere. To do this, one needs to know the half-life of ${}^{14}_{6}\text{C}$, which is 5715 years (CRC Handbook of Chemistry and Physics, 83rd ed., Boca Raton: CRC Press, 2002, page 11–52, line 9).

Solution. Modeling. Radioactive decay is governed by the ODE y' = ky (see Sec. 1.1, Example 5). By separation and integration (where t is time and y_0 is the initial ratio of ${}^{14}_{6}$ C to ${}^{12}_{6}$ C)

$$\frac{dy}{y} = k dt$$
, $\ln |y| = kt + c$, $y = y_0 e^{kt}$ $(y_0 = e^c)$.

²Method by WILLARD FRANK LIBBY (1908–1980), American chemist, who was awarded for this work the 1960 Nobel Prize in chemistry.

Next we use the half-life H = 5715 to determine k. When t = H, half of the original substance is still present. Thus,

$$y_0 e^{kH} = 0.5 y_0,$$
 $e^{kH} = 0.5,$ $k = \frac{\ln 0.5}{H} = -\frac{0.693}{5715} = -0.0001213.$

Finally, we use the ratio 52.5% for determining the time t when Oetzi died (actually, was killed),

$$e^{kt} = e^{-0.0001213t} = 0.525,$$
 $t = \frac{\ln 0.525}{-0.0001213} = 5312.$ Answer: About 5300 years ago.

Other methods show that radiocarbon dating values are usually too small. According to recent research, this is due to a variation in that carbon ratio because of industrial pollution and other factors, such as nuclear testing.

EXAMPLE 5 Mixing Problem

Mixing problems occur quite frequently in chemical industry. We explain here how to solve the basic model involving a single tank. The tank in Fig. 11 contains 1000 gal of water in which initially 100 lb of salt is dissolved. Brine runs in at a rate of 10 gal/min, and each gallon contains 5 lb of dissoved salt. The mixture in the tank is kept uniform by stirring. Brine runs out at 10 gal/min. Find the amount of salt in the tank at any time t.

Solution. Step 1. Setting up a model. Let y(t) denote the amount of salt in the tank at time t. Its time rate of change is

$$y' =$$
Salt inflow rate $-$ Salt outflow rate **Balance law.**

5 lb times 10 gal gives an inflow of 50 lb of salt. Now, the outflow is 10 gal of brine. This is 10/1000 = 0.01 (= 1%) of the total brine content in the tank, hence 0.01 of the salt content y(t), that is, 0.01 y(t). Thus the model is the ODE

(4)
$$y' = 50 - 0.01y = -0.01(y - 5000).$$

Step 2. Solution of the model. The ODE (4) is separable. Separation, integration, and taking exponents on both sides gives

$$\frac{dy}{y - 5000} = -0.01 dt, \qquad \ln|y - 5000| = -0.01t + c^*, \qquad y - 5000 = ce^{-0.01t}.$$

Initially the tank contains 100 lb of salt. Hence y(0) = 100 is the initial condition that will give the unique solution. Substituting y = 100 and t = 0 in the last equation gives $100 - 5000 = ce^0 = c$. Hence c = -4900. Hence the amount of salt in the tank at time t is

(5)
$$y(t) = 5000 - 4900e^{-0.01t}.$$

This function shows an exponential approach to the limit 5000 lb; see Fig. 11. Can you explain physically that y(t) should increase with time? That its limit is 5000 lb? Can you see the limit directly from the ODE?

The model discussed becomes more realistic in problems on pollutants in lakes (see Problem Set 1.5, Prob. 35) or drugs in organs. These types of problems are more difficult because the mixing may be imperfect and the flow rates (in and out) may be different and known only very roughly.

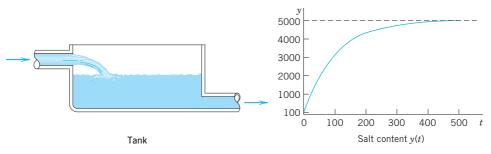


Fig. 11. Mixing problem in Example 5